Bcl-2 gene family and the regulation of programmed cell death.

نویسندگان

  • X M Yin
  • Z N Oltvai
  • D J Veis-Novack
  • G P Linette
  • S J Korsmeyer
چکیده

The BCL-2 gene was identified at the chromosomal breakpoint of t(14; 18)-bearing human follicular B cell lymphomas. BCL-2 proved to block programmed cell death rather than promote proliferation. Transgenic mice that overexpress Bcl-2 in the B cell lineage demonstrate extended cell survival and progress to high-grade lymphomas. Thus, BCL-2 initiated a new category of oncogenes, regulators of cell death. Bcl-2-deficient mice demonstrate fulminant apoptosis of lymphocytes, profound renal cell death and loss of melanocytes. BCL-2 protein duels with its counteracting twin, a partner known as BAX. When BAX is in excess, cells execute a death command; but, when BCL-2 dominates, the program is inhibited and cells survive. Bax-deficient mice display cellular hyperplasia, confirming its role as a proapoptotic molecule. An expanded family of BCL-2-related proteins shares homology clustered within four conserved regions termed BCL-2 homology 1 through 4 (BH1-4). These novel domains control the ability of these proteins to dimerize and function. An amphipathic alpha helix, BH3, is of particular importance for the proapoptotic family members. BID and BAD represent an evolving set of proapoptotic molecules, which bear sequence homology only at BH3. They appear to reside more proximal in the pathway serving as death ligands. BAD connects upstream signal transduction paths with the BCL-2 family, modulating this checkpoint for apoptosis. In the presence of survival factor interleukin-3, cells phosphorylate BAD on two serine residues. This inactivated BAD is held by the 14-3-3 protein, freeing BCL-XL and BCL-2 to promote survival. Activation of BAX results in the initiation of apoptosis. Downstream events in this program include mitochondrial dysfunction, as well as Caspase activation. The pro- and antiapoptotic BCL-2 family members represent central regulators in an evolutionarily conserved pathway of cell death. Aberrations in the BCL-2 family result in disordered homeostasis, a pathogenic event in diseases, including cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

Apoptosis: from Signalling Pathways to Therapeutic Tools

Apoptosis or programmed cell death is a gene regulated phenomenon which is important in both physiological and pathological conditions. It is characterized by distinct morphological features including chromatin condensation, cell and nuclear shrinkage, membrane blebbing and oligonucleosomal DNA fragmentation. Although, two major apoptotic pathways including 1) the death receptor (extrinsic) and...

متن کامل

The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9

Gain-of-function mutations in the Caenorhabditis elegans gene egl-1 cause the HSN neurons to undergo programmed cell death. By contrast, a loss-of-function egl-1 mutation prevents most if not all somatic programmed cell deaths. The egl-1 gene negatively regulates the ced-9 gene, which protects against cell death and is a member of the bcl-2 family. The EGL-1 protein contains a nine amino acid r...

متن کامل

Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury.

The bcl-2 and caspase families are important regulators of programmed cell death in experimental models of ischemic, excitotoxic, and traumatic brain injury. The Bcl-2 family members Bcl-2 and Bcl-xL suppress programmed cell death, whereas Bax promotes programmed cell death. Activated caspase-1 (interleukin-1beta converting enzyme) and caspase-3 (Yama/Apopain/Cpp32) cleave proteins that are imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 59 7 Suppl  شماره 

صفحات  -

تاریخ انتشار 1994